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In the following study, we will present a refined version of the relations used in the 
compound-rod method. The refined relations are constructed using the Rayleigh equation for 
the longitudinal vibration of a rod [i]. We also measure the acceleration on the surface 
of a measuring rod in one of the sections. This allows us to: i) improve the compatibility 
of the parametrically assigned stress-strain function; 2) easily find the specimen strain 
rate; 3) correct the stresses in the specimen with allowance for the inertial component. 

The well-established compound-rod method developed by Kol'skii and Hopkinson [2-4] makes 
it possible to obtain sufficiently reliable unidimensional dynamic stress-strain curves for 
appreciable strain rates. The classical relations of this method are based on a unidimensional 
theory of the propagation of elastic waves in rods and do not account for wave dispersion in 
actual rods or in three-dimensional objects: 

Ou t Ou 
e = O z  r 0 : '  ~ = E e .  (1 )  

Here, e = e(x, t) and ~ = o(x, t) are the stress and strain; u = u(x, t) is the displacement 
along the axis of the rod; x and t are the longitudinal coordinate and time; c is the velo- 
city of propagation of unidimensional elastic waves in the rod, or the "rod" velocity - which 
in the classical theory is independent of wavelength: c 2 = E/p (E and p are the elastic 
modulus and density of the material of the measuring rods). 

We will propose a method of measurement for the rod which is almost the same as the 
classical method. The revised method is illustrated by Fig. i, where i is the pressure- 
transmitting rod; 2 is the anvil rod; 3 is the specimen; 4 and 5 are strain gages; 6 is an 
acceleration transducer. The transducer is mounted on the surface of the anvil rod in the 
same section as the strain gage 5. We designate el(t), er(t) and et(t) as the strains in the 
incident, reflected, and transmitted waves, s and s as the length of the specimen and the 
distance from the ends of the rods to the strain gauges, and a as the radius of the rods and 
specimen. After completing the corresponding transformations [2] and allowing for el, E r and 
et, we use Eqs. (i) to obtain relations describing the behavior of the specimen: 

e,  = e , ( t ) ,  ~ ,  = a , ( t )  ( 2 )  

( t  i s  a p a r a m e t e r ) .  E q u a t i o n s  (2 )  a r e  a p a r a m e t r i c  r e p r e s e n t a t i o n  o f  t h e  c u r v e  Os-~ s .  The 
c u r v e  i s  n o t  smooth  b e c a u s e  o f  t h e  p r e s e n c e  o f  d i s p e r s i o n  [ 3 ] .  F o l l e n s b y  and F r a n z  [3] p r o -  
p o s e d  t h a t  p a r t i a l  a l l o w a n c e  be made f o r  d i s p e r s i o n  in  t h e  r o d  when a n a l y z i n g  m e a s u r e m e n t s  
( s e e  e x p r e s s i o n s  (10 )  and (13)  in  [ 3 ] ,  in  wh ich  c = c o n s t ) ;  a l l o w a n c e  was made f o r  d i s p e r s i o n  
in  [5] i n  t h e  m e a s u r e m e n t  a n a l y s i s ,  b u t  o n l y  f o r  a l a y e r .  An a n a l y s i s  o f  t h e  l o n g i t u d i n a l  
v i b r a t i o n s  o f  r o d s  [1 ,  6] and a l a y e r  [5 ,  7] s u g g e s t s  t h a t  t h e  p r o c e s s  o f  t h e  p r o p a g a t i o n  o f  
a s t r a i n  p u l s e  t h r o u g h  a r o d  can  be  r e p r e s e n t e d  a s  a p r o c e s s  t a k i n g  p l a c e  in  a t h r e e - d i m e n -  
s i o n a l  body  i n  t h e  f o l l o w i n g  manner :  a l o w - e n e r g y  p r e c u r s o r  p r o p a g a t e d  ahead  w i t h  t h e  v e l o c i t y  

7, - ' -g  s l 

Fig. I 

Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 3, 
pp. 127-131, May-June, 1992. Original article submitted March 5, 1991. 

434 0021-8944/92/3303-0434512.50 �9 1992 Plenum Publishing Corporation 



of the longitudinal waves; then the smooth main part of the pulse, distorted by dispersion, 
is transmitted (generally at the "rod" velocity); left behind by the main part of the pulse 
is a perturbation describing only shear strains (its velocity is the same as the velocity of 
the distortion waves). From a practical standpoint, most of the important data on the trans- 
mission of the pulse is obtained from its smooth main part. If the pulse has a nonremovable 
discontinuity (and let us assume that such conditions exist on the end), then the front of 
the nonremovable discontinuity moving with the "rod" velocity will be eroded [i, 6]. As was 
shown in [6], the propagation of the main part of the pulse is described by the Rayleigh 
equation to within the coefficient k. Assuming that the strain e x = 8u/3x is independent of 
the transverse coordinates y and z, we obtain 

v =--vyOu/Ox, w = --vzOu/Ox, u = u~,  t) (3)  

(v and w a r e  t h e  d i s p l a c e m e n t s  i n  t h e  y and z d i r e c t i o n s  and ~ i s  t h e  P o i s s o n ' s  r a t i o ) .  
A f t e r  c o m p l e t i n g  t h e  c o r r e s p o n d i n g  t r a n s f o r m a t i o n s  [ 1 ] ,  we f i n a l l y  o b t a i n  

c2 0~ 0~ + v2k2 0% O. (4)  
Ox 2 Ot 2 Ox '~ Ot 2 - -  

Here, k is the polar radius of inertia of the cross section, with k = = a2/2 for a circular 
cross section (where a is the radius of the rod). The straight lines ct + x are not charac- 
teristics of Eq. (4). 

Let us examine the solutions in the form of transmitted waves 

u~ =A~s in (q~x+_-  ~nt + ~ )  = An sin q~(x +_ c~t q- ~n/q~), (5)  

where A n i s  t h e  a m p l i t u d e  o f  a wave; qn i s  t h e  wave number (qn > 0 ) ;  ~n i s  f r e q u e n c y ;  ~n i s  
t h e  p h a s e ;  c n = ~n /qn  i s  t h e  v e l o c i t y  o f  t h e  wave. We w r o t e  t h e  same s o l u t i o n  in  two 
d i f f e r e n t  fo rms  in  Eq. ( 5 ) ,  s i n c e  t h e y  w i l l  b o t h  be used  below.  The wave number qn c h a r a c -  
t e r i z e s  t h e  c h a n g e a b i l i t y  o f  t h e  s o l u t i o n  a l o n g  t h e  r o d .  The wave moves w i t h  t h e  v e l o c i t y  

cV( t + v~k~q~). (6)  C n 

I t  i s  o b v i o u s  t h a t  c n + c when qn ~ 0. Tak ing  (5)  and (6)  i n t o  c o n s i d e r a t i o n ,  we o b t a i n  

Ou/Ox =•  (7)  

where  c n ~ c f o r  qn > 0. I n  c o n t r a s t  t o  c l a s s i c a l  e q u a t i o n  ( 1 ) ,  Eq. (7)  a c c o u n t s  f o r  wave 
d i s p e r s i o n .  

Le t  us examine t h e  d i s p l a c e m e n t s  o f  t h e  ends o f  r o d s  u~ and u a a b u t t i n g  t h e  specimen~ 
Here t h e  s u b s c r i p t s  1 and 2 c o r r e s p o n d  t o  t h e  p r e s s u r e  t r a n s m i t t e r  and a n v i l .  Then 3u2/3x = 
u t ,  3u~/3x = ~i + ~r" C o n s i d e r i n g  t h a t  ~i - ~r = ~ t ,  we have  

O(u2 - -  ul) /Ox = --2e~. ( 8 )  

R e l a t i o n s  (8)  and 

as = Eet (9)  

make i t  p o s s i b l e  t o  a c c o u n t  f o r  t h e  d i s p e r s i o n  o f  t h e  waves ( s e e  ( 6 ) ) .  

We s u p p l e m e n t  t h e  f u n c t i o n s  e l ( t ) ,  Z r ( t ) ,  and C t ( t )  o b t a i n e d  from measurements  w i t h  t h e  
o l d  p e r i o d i c  f u n c t i o n s  r  r  and ~ ( t ) ,  t h e n  e x p a n d i n g  t h e  p e r i o d i c  f u n c t i o n s  ~ * ( t )  

r 

and z ~ ( t )  i n t o  F o u r i e r  s e r i e s  

N N 

. au: N N 

or(t) = -~x x=0 ---- ~ Anrsin(0nt ~ A,~rsinqncnt. 

(zo) 

The coefficients Ant and Anr in (i0) are calculated from standard formulas involving use of 
the first representation of the Fourier series. It should be noted that the point of 

435 



reference x = 0 for each measurement of the layer and that this point coincides with the loca- 
tion of gauges 5 and 4. The number N is chosen on the basis of the following condition: the 
wavelength for N should be less than the rod radius (this condition must be satisfied to per- 
mit use of the Rayleigh equation (4) [i]). Let us proceed to the transmitted waves (see (5) 
and the second representation of the Fourier series in (i0)). Considering that a trans- 
mitted wave propagates from left to right and a reflected wave from right to left, we obtain 

au~ N 

~Tz (x, t) = - -  ~ An~ sin qn (z --  cnt), 

N N 
, "~'~ Anr Aor Aor ~.j Anr 

ur ( x ,  t) = ~ - -  c o s  q, ,  ( x  + c ~ t )  + T '  T = - -  - -  
n ~ l  qn n = l  qn" 

(11) 

In determining the constant A0r, we used the condition that the rod was at rest before arrival 
of the strain pulse. We emphasize that there are different points of reference for the x 
coordinates in Eqs. (ii), since they coincide with gauges 5 and 4. Let us consider allowing 
the dispersion in Eqs. (8-9) and (ii). To determine the values on the ends of the specimen 
from the measurements of e~, 8u~/Sx and u* r (for which the gauges were located a distance 

from the ends), we introduce the coordinate transformation 

t = t l ~ I / c .  (12) 

A p l u s  s i g n  i s  c h o s e n  in  (12)  when t h e  gauge  i s  p o s i t i o n e d  b e f o r e  t h e  end r e l a t i v e  t o  t h e  
p r o p a g a t i o n  o f  t h e  d i s t u r b a n c e  in  t h e  i n c i d e n t  wave ,  w h i l e  a minus  s i g n  i s  u s e d  when t h e  
gauge  i s  p o s i t i o n e d  p a s t  t h e  end r e l a t i v e  t o  t h e  p r o p a g a t i o n  o f  t h e  d i s t u r b a n c e  in  t h e  
r e f l e c t e d  and t r a n s m i t t e d  w a v e s .  A f t e r  c o m p l e t i n g  t h e  t r a n s f o r m a t i o n s ,  we o b t a i n  t h e  
f o l l o w i n g  r e f i n e d  r e l a t i o n s  in  t h e  K o l ' s k i i - H o p k i n s o n  compound- rod  me thod :  

N 

e s = -  7-'-] LL --~ COS qn Cntl] A-~---Zr}. 
s | n = l  n 

(14) 

The phase +_s - Cn/C) in Eqs. (13-14) depends on the number n, since different waves have 

different velocities. Generally speaking, the value of (i - Cn/C) is small because c = c n. 

However, the phase may also be large due to the length s Equations (13-14) for o s = Os(t l) 

and es = es(tz) account for dispersion in two ways: c i ~ cj if i # j; the phase is independent 

of the number. 

To improve the compatibility of the parametrically assigned stress-strain function, we 
will measure the acceleration of the surface of the measuring rod in the section where 
gauge 5 is located: 

a~v ~3u 
- -  = - -  v a  = ~p (t). ( 15  ) 
0 t 2 ax ~ t 2 

Relcording the accelerations ~(t) makes it possible to refine the value of time corresponding 
to the first point of the function ~ Meanwhile, in the proposed variant, the accelerations 
can be measured in tests conducted either in compression or tension [2]. The rate of defor- 
mation in this case will obviously be calculated directly: 

t 

a au t ~r  dt. e = a~ a-7 = ~a 

0 

Inertial forces become important in the case of high rates of deformation (of the order 
of 103-104 sec-Z), and it is advisable to consider these forces when determining the actual 
curve Os-g s (see (3.19-3.20) and (3.23) in [2]). Let the measured acceleration on the surface 

of the rods be ~(t) (15). We supplement this function with the odd periodic function ~*(t), 
thus obtaining the following (A n are coefficients of the Fourier series) 
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N N 

O~u* x=o **(t) I ~ A n s i n o ) n t =  t Z Ox Ot 2 va = va ~ A ~  sin ( - -  q~cnt),  
n = l  n ~ l  

from which 

02u * (x, t) l A o A o ~ A n 
c o s  q ~  ( x  - -  c ~ t )  + , = - -  ~ ,  

ot 2 Y a  
~ n  1 n=l 

since the wave moves from left to right and the rod is at rest before the wave's arrival. 
Let us now take into account the dispersion of the waves in the ~roblem (12). Let the 
geometric dimensions of the specimen satisfy the relation k s = s Then the stresses in 
the specimen are calculated from the formula [2] 

( ~ 8  ~ - -  E A:,~t.sin qn - -  l t - -  - -  cnt l  -[- Ps 2 Ot 2 " 

N A 

~t ~ = ~ 7 [ ~ 1 q ~  

(16) 

Thus, (14) and (16) are the final refined relations of the Kol'skii-Hopkinson !method 
of compound rods. 
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